Empirical Mode Decomposition for Advanced Speech Signal Processing
نویسندگان
چکیده
Empirical mode decomposition (EMD) is a newly developed tool to analyze nonlinear and non-stationary signals. It is used to decompose any signal into a finite number of time varying subband signals termed as intrinsic mode functions (IMFs). Such data adaptive decomposition is recently used in speech enhancement. This study presents the concept of EMD and its application to advanced speech signal processing paradigms including speech enhancement by soft-thresholding, voiced/unvoiced (V/Uv) speech discrimination and pitch estimation. The speech processing is frequently performed in the transformed domain and the transformation is usually achieved by traditional signal analysis techniques i.e. Fourier and wavelet transformations. These analysis methods employ priori basis function and it is not suitable for data adaptive analysis for non-stationary signal like speech. Recently, EMD is taken much attention for speech signal processing in data adaptive way. Several EMD based potential soft-thresholding algorithms for speech enhancement are discussed here. The V/Uv discrimination is an important concern in speech processing. It is usually performed by using acoustic features. The training data is used to determine the threshold for classification. The EMD based data adaptive thresholding approach is developed for V/Uv discrimination without any training phase. Noticeable improvement is achieved with the application of EMD in pitch estimation of noisy speech signals. The related experimental results are also presented to realize the effectiveness of EMD in advanced speech processing algorithms.
منابع مشابه
A Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل